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ABSTRACT

An increase in the spatial resolution of regional climate model simulations improves the representation of land

surface characteristics andmay allow the explicit calculation of important physical processes such as convection. The

present study investigates further potential benefits with respect to precipitation, based on a small ensemble of

high-resolution simulations with WRF with grid spacings up to 1km. The skill of each experiment is evaluated

regarding the temporal and spatial performance of the simulation of precipitation of one year over both a moun-

tainous region in southwestern Germany and a mainly flat region in northern Germany. This study allows us to

differentiate between the impact of grid spacing, topography, and convection parameterization. Furthermore, the

performance of a state-of-the-art convection parameterization scheme in the gray zone of convection is evaluated

against an explicit calculation of convection only. Our evaluation demonstrates the following: high-resolution

simulations (5 and 1 km) are generally able to represent the diurnal cycle, structure, and intensity distribution of

precipitation, when compared to observational datasets such as radar data and interpolated station data. The in-

fluence of the improved representation of the topography at higher resolution (1 km) becomes apparent in complex

terrain, where the localization of precipitationmaxima is more accurate, although these maxima are overestimated.

In flat areas, differences in spatial evaluations arise between simulationswith parameterized and explicitly calculated

convection, whereas smaller grid spacings (1 km vs 5km) show hardly any impact on precipitation results.

1. Introduction

General circulation models (GCMs), in the context of

long-term climate simulations, often use horizontal grid

spacing larger than 100km (Taylor et al. 2012), whereas

nested regional climate models (RCMs) are able to

reduce this resolution to the lower kilometer range.

In principle, a finer model grid allows a better represen-

tation of biogeophysical variabilities such as land use and

topography (Prein et al. 2015), which should translate into

more accurate simulations. Still, the recent Coordinated

Downscaling Experiment-European Domain (EURO-

CORDEX) RCM simulations with a 12-km horizontal

resolution for Europe only show minor improvements such

as a less pronounced southern European warm summer

bias compared to the ENSEMBLES simulations (50-km
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grid spacing). Yet, the biases inferred from both ensembles

of simulations lie in the same range (Jacob et al. 2014;

Kotlarski et al. 2014; Smiatek et al. 2016). Current research

efforts aim at reducing the grid spacing until processes are

resolved at grid scale, as the parameterization of critical

subgridprocesses is regardedas amajor sourceofuncertainty

in climate modeling and weather forecasting (Knight et al.

2007; Sanderson et al. 2008; Prein et al. 2013a).

Large uncertainty is associated with the parameteri-

zation of deep convection (e.g., Weisman et al. 1997;

Hohenegger et al. 2008). The interaction of convective

parameterizationswithmicrophysics, planetary boundary

layer (PBL), and radiation schemes at kilometer-scale

resolutions is complex (Prein et al. 2015). According to

Bryan andMorrison (2012) a grid spacing of 100mwould

be necessary to start resolving in-cloud turbulence and

particularly the entrainment process, which is a measure

for convective overturning. Consequently, only deep

convection can be explicitly calculated for grid spacings in

the lower kilometer range. However, for deep convection

the gap in resolution between explicitly resolved flows

and implicitly parameterized flows—called the ‘‘gray

zone for convection’’—has to be taken into account

(Wyngaard 2004; Prein et al. 2015). Undesired side-

effects in this gray zone may deteriorate simulation re-

sults with and without convective parameterizations

(Zhou et al. 2014).

Arnault et al. (2016) and Klein et al. (2017) performed

their simulations of the monsoon regime in West Africa

with the Weather Research and Forecasting (WRF)

Model without convection parameterization for all grid

spacings below 10km. They showed that in this region,

wheremesoscale systems are larger, the explicit calculation

of convection improved the representation ofmodel-based

land–atmosphere interactions. In the temperate zone,

Weisman et al. (1997) have shown that for grid spacings

below 4km, an explicit calculation of deep convection is

reasonable. Thus, the quality of the simulations depends

on the ability to resolve the dominant processes rather than

purely on the grid spacing.

In recent years, a number of high-resolution simula-

tions in the convection permitting scale (CPS; grid

spacing# 4 km) were performed that are summarized in

Prein et al. (2015). The authors mainly investigate pre-

cipitation, temperature (e.g., Prein et al. 2013a; Brisson

et al. 2016b), cloud cover (Langhans et al. 2012; Prein

et al. 2013a; Fosser et al. 2015; Brisson et al. 2016b), and

the improvement of physical parameterizations by, for

example, accounting for aerosol effects in explicit sim-

ulations of clouds (Heinzeller et al. 2016).

Most attention is paid to the simulation of pre-

cipitation, since it aggregates many physical pro-

cesses including moisture advection, microphysics, and

atmospheric dynamics. If precipitation is correctly

simulated on a high spatiotemporal scale, many pro-

cesses within the model are likely well captured. Early

high-resolution simulations in the CPS were presented

by Grell et al. (2000), Kunstmann et al. (2004), and

Kunstmann and Stadler (2005). They showed signifi-

cant differences of the location of precipitation pat-

terns and precipitation amounts with and without

convection parameterization in complex terrain. In the

following years, the benefit of a better representation

of topography in complex terrain was studied with re-

spect to improvements regarding the diurnal cycle of

precipitation, the frequency of heavy hourly events, the

representation of the size and shape of precipitation

patterns, and the spatial variability (e.g., Hohenegger

et al. 2008; Weusthoff et al. 2010; Prein et al. 2013a).

Similar improvements were found both for longer

simulations of two to three decades (Kendon et al.

2012; Fosser et al. 2015) and in coastal regions without

orographic forcing (Brisson et al. 2016a). However,

several shortcomings were observed such as erroneous

intensification of heavy precipitation for different re-

gions and orography (Kendon et al. 2012; Langhans

et al. 2012; Chan et al. 2013; Prein et al. 2013a; Ban et al.

2014). A general conclusion whether this was an effect

of the chosen model, the investigation area, or the

analysis approach could not be drawn (Prein et al.

2015). Prein et al. (2013b) showed that in principle an

added value is easier to detect in mountainous regions

than in a hilly area and that during the winter months,

where convection is generally less intensive, the added

value of high-resolution simulations is related to the

better orographic resolution.

While the benefit of CPS simulations is generally ac-

cepted, the question remains whether an even higher

resolution is beneficial in terms of the model accuracy.

According to Weisman et al. (2008), Mass et al. (2002),

and Kain et al. (2008) a more realistic representation of

convection was observed with smaller grid spacings.

However, no improvements in forecast skill for pre-

cipitation were obtained. In contrary, the skills got

worse when reducing grid spacings up to 2 km (Kain

et al. 2008) and 1km (Mass et al. 2002). Clark et al.

(2009) argued that increasing finescale details seems to

be responsible for this effect. In their abstract, Roberts

and Lean (2008) summarized the problem as follows:

‘‘greater realism does not necessarily mean more accu-

rate precipitation forecasts.’’ However, Roberts and

Lean (2008) showed improvements for 1-km grid spac-

ing compared to 4km for certain statistical measures

such as the fractions skill score. Langhans et al. (2012)

found only small differences between simulations at

various grid spacings between 4.4 and 0.55 km in their
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9-day evaluation of convective systems over the Alps.

Uncertainty remains whether added value can be asso-

ciated with a further increase of grid spacings, and if so,

for which characteristics they are observed.

A third option for high-resolution simulations besides

the explicit calculation of convection for very small and

coarser grid spacings, is applying convection parame-

terization. To balance the trade-off between an increase

in model accuracy and higher computational costs, in

particular in the context of long-term climate simula-

tions, new parameterizations of deep convection are

developed that can be applied in between the classical

convection-permitting (#4km) and mesoscale ($10km)

regime (Baldauf et al. 2011; Grell and Freitas 2014).

Mahoney (2016) evaluated the impact of explicit versus

parameterized convection at 4-km grid spacing. Their

investigation of convective events revealed that an ex-

plicit calculation of convection improves over classic

convective parameterizations. However, these studies

suggest that certain aspects of a convection parameter-

ization scheme (e.g., shallow cumulus) are still required

to account for unresolved processes at this scale. They

further showed that a revised scale-aware version of the

Kain–Fritsch convection parameterization scheme is

able to provide similar results as the explicit calculation.

In this work, a combination of high-resolution WRF

Model simulations with different grid spacings, parame-

terizations, and over different topographies is analyzed.

Our simulations make use of the urban canopy model to

account for the impact of the urban geometry on surface

energy budgets andwind shear calculations.We investigate

grid spacings of 1 and 5km without convection parame-

terization and also apply the scale-aware Grell–Freitas

convection parameterization for 5-km grid spacing. This

allows us to evaluate the strength and weakness of each

dataset regarding its performance of simulating the tem-

poral, spatial, and intensity distribution of precipitation.

The aim of this study is to investigate (i) whether an

increase in resolution from 5 to 1 km is leading to an

added value in the simulations, and whether this

added value justifies the increase in computational

costs; (ii) if convection parameterizations are able to

provide similar results, or if they even show advan-

tages for certain aspects; and (iii) how topography

influences the performance of high-resolution pre-

cipitation simulations.

The simulations are performed for two domains with

different topography in the northern and southwestern

part of Germany for a time period between 3 months

and 1 year. The spatial and temporal evaluations

(e.g., correlograms, fractions skill score, probability

density functions) are achieved with several valida-

tion datasets (radar data, interpolated station data),

mainly on 3 hourly time steps with grid spacings be-

tween 5 and 15 km.

2. Experiment design

a. WRF Model setup

TheWRFModel (Skamarock et al. 2008) is used in this

work as an RCM to downscale global atmospheric re-

analysis data. The best setup of physical parameterization

schemes in Table 1 is obtained through extensive testing

and evaluating the performance regarding precipitation and

temperature (2m), compared to validation datasets such as

the first high-resolution gridded dataset of daily climate

over Europe (E-OBS; Haylock et al. 2008), Regionalized

Precipitation Amount (REGNIE; Rauthe et al. 2013), and

stationmeasurements (not shown). The choice of themodel

configuration is made with focus on high-resolution simu-

lations such as applying a microphysics scheme that ac-

counts for graupel processes, which are important for

reliable simulation of convection (Brisson et al. 2016a), a

scale-aware convection parameterization scheme that at-

tempts to smooth the transition to cloud-resolving scales

(Grell and Freitas 2014), and a PBL scheme that shows

weaker influences of undesired effects such as ‘‘grid-

dependent convection’’ (Wyngaard 2004; Zhou et al. 2014;

Ching et al. 2014) as a result of partly resolving large eddies.

At finer scales, biogeophysical features such as urban

areas also become more important. The shape of a city

influences momentum, turbulence, and thermal fluxes

between the surface and the atmosphere. We use the

single-layer urban canopy model (SLUCM; Kusaka

et al. 2001; Kusaka and Kimura 2004) in this in-

vestigation to parameterize the major processes within

urban areas. Hence, theNoah land surfacemodel (LSM)

is used to calculate the relevant processes for natural

surfaces and the SLUCM for the three-dimensional

structure of urban surfaces (Chen et al. 2011).

b. Investigation areas and domains

Two different investigation areas in northern and south-

western Germany with a minimum grid spacing of 1km are

chosen to analyze and compare similar high-resolution sim-

ulations over different topography (Fig. 1). The northern

innermost domain (D03N) around Hamburg, Germany, is

characterized by an almost flat landscape and a maritime

influence. The southwestern innermost domain around

Freiburg, Germany (D03S), with the Vosges in the west

and theBlack Forest in the east show amuch higher degree

of orographically enhanced precipitation and more intense

convection.

ERA-Interim reanalysis data (Dee et al. 2011) serves as

input for the RCM simulations at a spatiotemporal reso-

lution of 80km and 6h. For downscaling the 80-km forcing
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data to a fine grid of 1km, two intermediate steps are used

in a one-way-nesting mode: a large parent domain D01 of

15-km grid spacing (181 3 202 grid columns) is used to

downscale the reanalysis data. The intermediate 5-km

domain (D02, 241 3 280 grid columns) serves as input to

the two domains at 1-km resolution (Fig. 1). All domains

use 42 vertical eta levels in a default (i.e., automatic) dis-

tribution by the WRF Model. These small nesting step

ratios (5.3–3–5) are used tominimize possible variations at

the boundaries between different domains due to scaling

effects (Matte et al. 2017). To further reduce deviations

from the large-scale forcing patterns, spectral nudging (von

Storch et al. 2000) for temperature, horizontal wind, and

humidity is applied every 6h on the outer 15km domain

for features with wavelengths of about 1300km and up-

ward. This downscaling technique constrains the large at-

mospheric conditions within an RCM to the global model

and the propagation of large-scale atmospheric patterns

into the RCM is better realized.

c. Spinup

Soil properties such as moisture content or tempera-

ture are changing slowly over time and often need severalT
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FIG. 1. Overview of the four WRF domains showing the altitude

for the respective grid spacing to downscale ERA-Interim data.

The map is overplotted by the stations used for the interpolation of

STA-5 (black triangle), the radar sites (gray star), and national

borders (dark gray). The investigation areas D-North and D-South

are based on D03N and D03S discarding the outer 15 km of both

domains to minimize numeric artifacts.
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weeks or months to spin up. To save computational

efforts, a spinup of four months is performed on the outer

domain D01 only. After four months, the inner domains

are added and adopt subsurface and surface fields such as

skin temperature, soil moisture, and soil temperature

fromD01.One additionalmonth of spinupon all domains

is appended to reach satisfying soil conditions for each of

the domains.

3. Simulation and validation data

a. Simulation data

The analysis is performed for the areas covered by do-

mains D03N and D03S. For both areas, a 15-km-wide

boundary zone is discarded to minimize numeric artifacts

in the analysis. The resulting areas (domains) are called

D-North and D-South in the following. The simulation re-

sults are then compared for all domains including D01

(15km, 3h) andD02 (5km, 1h). Table 1 shows the resulting

grid columns for each area based on the respective domains.

Two different simulation runs are conducted to in-

vestigate the differences among high-resolution simu-

lations. For both runs, the same spinup procedure and

WRF setup is used, except for the parameterization of

convection. The label R1P-15 for instance means ‘‘run 1

with cumulus parameterization and 15-km grid spac-

ing.’’ R2E-5 means ‘‘run 2 with explicit calculation of

convection and 5-km grid spacing.’’ Table 1 also gives an

overview of all datasets used in this chapter in its original

spatial and temporal resolution and the period for which

the data are produced. Each dataset is available for both

areas D-North and D-South. Overall, four WRF data-

sets are analyzed for each area. Run 1 simulations are

generated for the whole year (June 2005–May 2006),

whereas the remaining run 2 simulation is conducted

only from June to August 2005 (summer), where the

main convective activity can be expected.

b. Validation data

Reliable precipitation data at high spatial and temporal

resolution are required for the analysis and are often the

biggest challenge to obtain. Interpolated station data usu-

ally represent the natural temporal variability of pre-

cipitation and its distribution of intensities well at the

location of the recording stations. But interpolation tech-

niques are hardly able to represent location and exposure

andmay lead to smoothing effects and limitations in spatial

precipitation patterns, especially in complex terrain and for

short-lived convective events. In contrast, radar data show

a good representation of the spatial distribution of pre-

cipitation echoes, but have limitations regarding the eval-

uation of temporal aspects of precipitation and absolute

precipitation intensities. Furthermore, the existing radar

datasets in Germany from the Radar-Online-Adjustment

(RADOLAN) project (Bartels et al. 2004) suffer from

limitations such as not being corrected for systematic

measuring effects like the vertical profile of reflectivity

(VPR), clutter, or compositing effects, all of which may

influence precipitation patterns (Fabry andZawadzki 1995;

Vignal et al. 1999; Franco et al. 2006; Krajewski et al. 2011).

Consequently, an additional radar dataset, corrected for

systematic measuring effects, is applied for the spatial

evaluation in this work, while interpolated rain gauge data

is used in the temporal evaluation.

1) CORRECTED RADAR DATA

The basis for the radar dataset is the RX product of

the German Meteorological Service (DWD) with 256

classes (31.5–95.5 dBZ) and a resolution of 0.5 dB. It is

based on terrain-following precipitation scans of up to

16 radar systems at high temporal and spatial resolution

(5min; 1 3 1 km2). This product undergoes the usual

corrections within the signal processor [e.g., Doppler

filtering, clutter correction, speckle remover, and

thresholding for noise (LOG) and signal quality (SQI;

Seltmann (1997)]. Additional corrections are applied to

correct systematic effects in radar data such as clutter

remnants, spokes, and the dependence of radar mea-

surements on altitude. Precipitation intensities are cal-

culated by a three-part Z–R relationship (Bartels et al.

2004), and an adjustment to rain gauge data is per-

formed. These corrections are based on Wagner et al.

(2012). In Table 2, mean hourly RMSE values between

station data and radar data are shown. The highest

RMSE values over Germany are observed in the south,

due to clutter and shading effects in the alpine regions.

The higher RMSE values in summer (0.5mm) are

caused by higher precipitation intensities and convective

patterns than in winter (0.37mm). The summer pre-

cipitation events are more difficult to capture by sta-

tions, and the translation from radar reflectivities into

rain rates during heavy precipitation shows larger errors.

Heavy precipitation intensities are slightly under-

estimated, whereas smaller and medium precipitation

intensities are well captured. In D-North, clutter rem-

nants lead to higher RMSE values (0.48mm) than in

D-South (0.43mm), albeit the flatter topography. Con-

sequently, the RMSE values in winter are lower, but a

higher influence of snow, especially inD-South, impedes

both measurements (0.21–0.24mm). The abbreviation

of this dataset is RAD-1.

2) INTERPOLATED STATION DATA

The second dataset is solely based on station data

from a dense network of rain gauges in Germany.
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Hourly data of approximately 40–70 quality-controlled

stations from DWD for each investigation area (Fig. 1)

are interpolated by an external drift-kriging technique

based on altitude as drift variable (Deutsch and Journel

1992). The interpolation of the station data is performed

on a 5-km grid for both areas D-North and D-South.

The characteristics of the topography dominate the in-

terpolated precipitation patterns. Naturally induced

variations of precipitation amounts due to windward

and leeward effects cannot be adequately considered.

Since our observational dataset is limited to the German

station network, precipitation data are available for the

entire area D-North, but only for the German part of

D-South. This dataset is called STA-5 in the following.

3) REGNIE DATA

For analyses on a longer time scale (days or seasons),

the REGNIE data are additionally used for means of

comparison. This dataset of daily interpolated rain

gauge values is available on an approximately 1 km2 grid

for Germany. About 2000 quality-controlled rain gauges

are interpolated using long-term monthly back-

ground fields and linear regression techniques. The

geographical location aswell as the direction and degree of

exposure are taken into account. REGNIE data are re-

garded as a standard dataset for resolutions of one day or

longer inGermany. As this dataset is only based on station

data without using additional pattern information (from

radar or satellites), its accuracy in complex terrain is lim-

ited. REGNIE data are based on a much higher density of

station data than the STA-5 dataset, but are only avail-

able on a daily scale. This dataset is called REG-1 in the

following.

4. Evaluation methods

The aim of this investigation is to assess differences

between high-resolution simulations with WRF and

highlight the potential added value and also drawbacks

of each dataset with respect to precipitation. At small

scales, precipitation is partly regarded to be non-

deterministic and unpredictable (Hohenegger et al.

2008). Small spatial and temporal shifts between mod-

eling results and observations may lead to the ‘‘double

penalty’’ problem: a slight spatial shift first misses the

observed precipitation object, and second produces

precipitation where no precipitation is observed (Prein

et al. 2013a). Common statistical values such as root-

mean-square error (RMSE) or correlation are only

useful on a longer time scale or averaged over suffi-

ciently large areas. For the analysis of simulations with

high temporal and spatial resolution, a statistical ap-

proach that is independent of space or time is useful, for

example, the comparison of the spatial extent and cor-

relation of precipitation objects, or the goodness of fit of

temporally averaged model results and observation.

Statistical values or means, such as the distribution of

precipitation amounts, provide additional information

on mean precipitation characteristics. While the em-

phasis of this work lays on spatial evaluation techniques,

attention is also paid to the temporal component to fully

evaluate the performance of our simulation results.

Spatial and temporal evaluation methods

Most evaluations are performed on the same grid

resolution to reveal the added value due to a better

representation of processes instead of the improved

representation of terrain and elevation (Berg et al.

2013). In this study, we use the coarse-grid resolution of

15 km for the bulk of the analysis, and the intermediate-

grid resolution of 5 km for the investigation of small-

scale precipitation patterns to better represent the

spatial variability of precipitation. The entire evaluation

period of one year is subdivided into seasons with a focus

on summer and winter. These two seasons are charac-

terized by different synoptic-scale forcing andmesoscale

processes (Prein et al. 2013a; Fosser et al. 2015), in

particular with respect to heavy precipitation. Most

convective events occur in summer (June–August),

during which the largest added value of high-resolution

simulations has been found (e.g., Kendon et al. 2012;

Prein et al. 2013a; Ban et al. 2014). The additional sim-

ulation R2E-5 is performed for this period only.

For almost all evaluation aspects, the two distinct

validation datasets STA-5 and RAD-1 are used. Since

REG-1 and STA-5 only provide measurements for the

German part of D-South, the evaluations are performed

for this part of the domain D-South. Exceptions, as to

when the entire domain including the French territory is

considered, are explicitly mentioned.

First, the seasonal domain-averaged precipitation

amounts are calculated for each model experiment.

Second, the main characteristics of precipitation pat-

terns are analyzed on a longer time scale for a subset of

the simulations, based on annual precipitation patterns

at their respective grid resolution. Additionally, an-

nual precipitation patterns are evaluated on a common

TABLE 2. RMSE of hourly precipitation amounts for summer

and winter between radar and station data (516 stations) for

Germany (BRD), D-North, and D-South.

Area Summer Winter

BRD 0.5 0.37

D-North 0.48 0.21

D-South 0.43 0.24
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15-km grid based on mean correlation coefficients (cor)

and normalized standard deviations (sn) compared to

REG-1.

Third, an in-depth investigation of the spatial pre-

cipitation patterns at the scale of convective events

is performed based on correlograms at 5-km and 3-h

resolution. The evaluations reveal the average decrease

of the correlation with distance, individually for each

dataset. It is performed for a threshold (domain aver-

age) q 5 0.01 and 0.5mmh21 to represent time steps

with light precipitation or more, and such with more

intensive precipitation only (approximately 95th to 98th

percentile). Therefore, the correlations between each

grid cell and all other grid cells are calculated for the

respective time steps, averaged and plotted versus dis-

tance. This approach is based on the principle that a

stronger decrease in correlation with distance corre-

sponds to smaller-scale precipitation patterns in the

observations or simulations.

To overcome the problem of double penalty, certain

measures exist that consider those displacements [for

more information see Roberts and Lean (2008); Wernli

et al. (2008); Prein and Gobiet (2011)]. In this study, the

fractions skill score (FSS) is applied. The basic idea is

that a simulation is useful if the spatial frequency of

events is similar in forecast and in observation (Prein

2013). FSS is a neighborhood (or fuzzy) verification

measure that directly compares forecasts and observed

fractional coverages of precipitation. First, the pre-

cipitation fields of the simulations and the observations

are transferred into binary fields with the help of a

precipitation threshold q (e.g., 0.1, 0.5, 1.0, and 2.0mm).

In the second step, a spatial moving average is applied to

the binary fields, based on a squared window of length

n and uniform weights. Here, n is the horizontal scale

(neighborhood size) with values between n5 1 and n5
2N 2 1 where N 5 max(Nx, Ny). The third step is the

computation of the FSS(n), which requires the calcula-

tion of the mean square error for each n in advance:

FSS
(n)

5 12
MSE

(n)

MSE
(n) ref

. (1)

The term MSE(n)ref used in Eq. (1) can be regarded as

the largest obtainable MSE with the given observed and

simulated fractions. FSS(n) values range between 0 and 1

(perfect fractional coverage). Two further thresholds

are defined. The lower threshold is the observed frac-

tional precipitation coverage (wet-area ratio) and rep-

resents the FSS value of a random simulation. The upper

threshold is the value halfway between the random limit

and a perfect match (FSS5 1) and is defined as the limit

where ‘‘reasonable skill’’ is achieved. More detailed

information about the FSS can be found at Roberts and

Lean (2008) and Roberts (2008).

This procedure is performed at hourly time steps

based on a 5-km grid for the entire areas D-North and

D-South to apply this measure on a meaningful amount

of grid cells. This excludes the datasets STA-5 because

of the coverage of only the German part of the domain

as well as R1P-15. RAD-1 serves as observational ref-

erence. The seasonal FSS is calculated as the median

of all hourly FSS for summer or winter. Varying the

thresholds q and the size of the window n, both intensity-

and scale-dependent analyses are performed with FSS.

To assess the temporal accuracy of the high-resolution

simulations in summer and winter, cor and sn compared

to STA-5 (15 km and 3h) are calculated. Furthermore,

the diurnal cycle of precipitation is computed. It is based

on a 15-km grid spacing and hourly precipitation values

and calculated by spatially and temporally averaging the

precipitation amounts for the same hour of a day over

the entire domain.

Finally, the distribution of precipitation amounts

is analyzed in the form of probability density functions

(PDFs).

5. Results

a. Overview of mean values

As a first overview, Fig. 2 displays the seasonal rainfall

amounts for all evaluated datasets for the areas D-North

and D-South as relative differences to the observed total

amount of precipitation in REGNIE. This evaluation is

similar to the approach taken in Berg et al. (2013), who

compared their ensemble of 9 high-resolution simulations

(7-km grid spacing) over Germany to REGNIE data.

With a total of 701mm, almost half as much pre-

cipitation is observed for D-North than for the German

part of D-South (1198mm) between June 2005 and May

2006. The validationdatasets STA-5 andRAD-1 vary up to

613% from REG-1 in all seasons and both areas. In win-

ter, larger variations of up to226% forRAD-1 inD-South

are observed as a consequence of frequent snowfall.

Our simulations overestimate precipitation amounts

in summer and winter months between 0.5% and 18%

and reveal a maximum deviation from REG-1 of231%

in autumn. These are promising results compared to

Berg et al. (2013), who presented seasonal variations

between 28% and 83% for the period 1971–2000. Ad-

ditionally, the mean wet bias of annual precipitation

amounts between 14% and 59% presented by Berg et al.

(2013) is not observed in our simulations.

R1P-15 differs from the other simulations in both

domains with partly opposite tendencies of over- and
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underestimations (e.g., in summer). Only R1P-15 con-

sistently underestimates precipitation in all seasons in

D-South, a consequence of the coarse grid spacing in

complex terrain dominated by orographically forced

precipitation events.

The high-resolution simulations (with 1- or 5-km grid

spacing) behave similarly in both domains. The 5-km

simulations (R1P-5 and R2E-5) only differ in D-South

by 5% while they are almost identical in D-North. For

the smaller grid spacing of 1 km, the overestimations and

underestimations compared to REG-1 are intensified by

up to 7% in almost all seasons except summer and both

areas compared to grid spacings of 5 km (R1E-1 versus

R1P-5).

In summary, the high-resolution-simulations differ

considerably from R1P-15, but they differ only slightly

from each other.

b. Spatial evaluation

1) ANNUAL PRECIPITATION PATTERNS IN

D-NORTH

REG-1 is used as reference in Figs. 3 and 4 and shows

detailed spatial patterns of precipitation amounts. For

D-North (Fig. 3a), the precipitation distribution follows

a northwest to south/southeast gradient from maximum

to minimum precipitation.

Figure 3c reveals some constraints of the precipitation

data RAD-1. Two spokes are visible near Hamburg, and

clutter remnants are obvious in the southwestern part

(Hannover radar). The latter features are responsible

for the weak statistical measures (sn 5 1.51, r 5 0.40).

These patterns are mainly present in winter and only

show a minor influence in summer (sn 5 0.90, r 5 0.81;

not shown).

The simulated precipitation patterns for D-North in

Figs. 3d–f show less agreement with the validation da-

tasets. The precipitation maximum in the northwestern

part is underestimated and shifted toward the center;

the minimum in the southeastern part is absent in the

simulations. The simulated summertime precipitation

is mainly responsible for this shift (not shown). Only

R1P-15 (Fig. 3d) roughly reproduces the location of the

observed maximum precipitation (r 5 0.47). The main

patterns of R1P-5 (Fig. 3e) and R1E-1 (Fig. 3f) are

similar on an annual basis.

2) ANNUAL PRECIPITATION PATTERNS IN

D-SOUTH

Figure 4a shows the corresponding results of REG-1

for D-South. The precipitation patterns in D-South

clearly follow the topography: precipitation maxima are

produced in the southern, central, and northern part of

the Black Forest (47.68–498N, 7.78–98E) and in the

Vosges in the western part of the domain (47.68–48.88N,

6.38–7.58E), with significantly higher precipitation amounts

than in D-North.

The sn of the interpolated station dataset STA-5 in

D-South (0.72) are much lower than REGNIE data on

the same 15-km grid with respect to annual precipitation

patterns. This supports the visual impression that STA-5

(Fig. 4b) shows similar spatial distributions (r 5 0.91),

albeit with the structure being smoother and the pre-

cipitationmaxima lower than REGNIE data. According

to Fig. 4c, the overall distribution of precipitation

patterns is reproduced well by RAD-1, although radar

artifacts reduce the agreement. Apart from artificial

ringlike structures, a result of the radar compositing al-

gorithm, topographic shading effects occur for RAD-1,

which cover the precipitation maxima in the Black

Forest and lead to a lower correlation coefficient of 0.40.

Over the complex terrain in D-South (Fig. 4), the

simulated precipitation patterns are close to the obser-

vations with spatial correlation between 0.79 and 0.85.

The locations of minima andmaxima and the transitions

in between are fit well, even for the finescale structures

FIG. 2. Seasonal precipitation amounts (June 2005–May 2006) for all datasets for (left) D-North and (right)

D-South. The columns display the relative difference between the respective dataset and REGNIE, averaged over

the entire area. The simulation R2E-5 is available for the summer months only.
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in R1E-1 (Fig. 4f). However, in this case the minima and

maxima are too pronounced, which is also expressed in

an increase in sn for R1P-5 (1.28) and R1E-1 (1.35).

3) SPATIAL SIMILARITIES IN SUMMER

The plots in Fig. 5 show the average decrease of the

temporal correlation of 3-h precipitation with distance

based on two precipitation thresholds, individually for

each dataset. It should be noted that the investigation of

1-h data (excluding R1P-15) leads to comparable results

(not shown).

The differences between the observational datasets

reveal their respective shortcomings. STA-5 is not able

to adequately reproduce small-scale features in summer

and complex terrain, which leads to smaller decreases of

correlations with distance (Figs. 5c,d). In fact, radar data

are ideal for this purpose and as such are chosen as the

validation dataset.

In summer, the differences among the simulations are

large due to a high influence of small-scale convective

events, which lead to specific variations with topogra-

phy. In the flat terrain of D-North (Figs. 5a,b), a sepa-

ration depending on convection treatment is observed

with a high similarity of simulations with convection

parameterization (R1P-15 and R1P-5) and with an ex-

plicit calculation of convection (R1E-1 and R2E-5).

FIG. 3. Distribution of annual precipitation amounts of validation data (a) REG-1, (b) STA-5, and (c) RAD-1 and of simulation data

(d) R1P-15, (e) R1P-5, and (f) R1E-1 for D-North at their original resolution, overplotted by contour lines of elevation in meters. In the

top-right corner of each plot, the correlation coefficient (cor) and the normalized standard deviation (sn) compared to REG-1 based on

a common 15-km grid spacing are shown. The evaluation period is June 2005–May 2006.
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Compared to RAD-1, the latter simulations are superior

with a very similar decrease of correlation with distance.

In D-South, a separation by spatial resolution becomes

apparent with a similar decrease of correlations of

R1P-5 and R2E-5 with distance and even smaller cor-

relations for R1E-1 with distance. For all precipitation

events (Fig. 5c), the simulations with 5 km show a high

accordance with RAD-1, and for higher precipitation

amounts (Fig. 5d) R1E-1 performs best, especially for

distances below 25 km.

In general, the decrease in correlation of the simula-

tion results with smaller grid spacing indicates an in-

crease of the variability of precipitation patterns in

space. The high-resolution simulations (1 and 5km)

perform well, whereas the decrease of R1P-15’s corre-

lations is too weak for all precipitation intensities and in

both domains. This is most pronounced for areas with

complex terrain and higher precipitation intensities

(Fig. 5d).

4) SPATIAL SIMILARITIES IN WINTER

The limitations in RAD-1 lead to a faster drop in

correlation with distance. Therefore, in contrast to

summer, the STA-5 dataset is used for the validation for

domain D-North in winter (Figs. 6a,b).

In winter, the high-resolution simulations R1P-5 and

R1E-1 perform similarly for both domains (Fig. 6) with a

stronger decline with distance in D-South compared to

validation datasets. The lack of convection activity in

the winter is probably responsible for the fact that even

in the complex terrain of D-South only minor differ-

ences between both simulations exist if the grid spacing

is further reduced (1 km vs 5km).

In fact, R1P-15 performs similarly in flat terrain and

winter (Fig. 6a). However, in complex terrain and for

higher precipitation intensities, significant differences

between R1P-15 and the high-resolution simulations

remain (Figs. 6b–d).

5) SKILL SCORE TO COMPARE HIGH-RESOLUTION

PRECIPITATION PATTERNS IN SUMMER

The FSS in Fig. 7 is presented for four thresholds in

summer for both investigation areas. All FSS values

exceed the limit of random skill (dashed line in Fig. 7).

The FSS of all simulations generally increases with

horizontal scale and decreases with larger precipitation

thresholds.

In line with the correlograms, the FSS also reveals a

separation according to convection treatment inD-North

and according to grid spacing inD-South in summer. This

FIG. 4. As in Fig. 3, but for D-South.
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separation is only very weak for the lowest threshold.

Simulations without convective parameterization show

the highest FSS values in D-North. R2E-5 outperforms

R1E-1 for the largest thresholds (Figs. 7c,d). In D-South,

R1E-1 performs best, whereas the 5-km simulations

(R1P-5 and R2E-5) are similar. Only for the largest

threshold (Fig. 7h), is R2E-5 similar to R1E-1. Hence,

the FSS in complex terrain is mainly influenced by grid

FIG. 6. As in Fig. 5, but for winter.

FIG. 5. Correlograms of all available datasets based on a 5-km grid and 3-h values for (a),(b) D-North and

(c),(d) D-South for the summer months. Two different thresholds (0.01 and 0.5mmh21) represent (left) all pre-

cipitation intensities and (right) the higher precipitation intensities. For the summer months, the additional sim-

ulation R2E-5 is also available.
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spacing, whereas for higher precipitation intensities, the

treatment of convection dominates.

6) SKILL SCORE TO COMPARE HIGH-RESOLUTION

PRECIPITATION PATTERNS IN WINTER

In winter, only R1E-1 and R1P-5 are available for

comparison. The FSS in Fig. 8 is presented for only three

thresholds for both investigation areas because of lower

precipitation intensities in winter. Again, all FSS values

exceed the limit of random skill (dashed line in Fig. 8), and

the FSS decreases with larger precipitation thresholds.

For small thresholds, the FSS is slightly higher than

in summer (Figs. 8a and 8d). For thresholds of 0.5mmh21

and above, a similar behavior to summer is observed:

R1E-1 outperformsR1P-5 for all thresholds andhorizontal

scales.

c. Temporal evaluation

1) MEAN TEMPORAL MEASURES

According to Table 3, RAD-1 agrees well with STA-5,

which serves as a reference with cor of approximately

0.8 in summer and winter. The sn is also similar, except

for winter in D-North where clutter influence leads to an

increased sn of 1.40.

The high-resolution simulations show low cor values

between 0.24 and 0.33 in summer in both domains.

Despite the overestimation of sn values, R2E-5 per-

forms best in D-North and R1E-1 performs best in

D-South, but the differences are weak. The agreement

of sn values of both simulations indicate that the explicit

calculation of convection is responsible for this similar

behavior. The coarser R1P-15 performs better with a

slightly higher cor (0.4 and 0.3), but a reduced sn in

summer. This is likely due to the already mentioned

double-penalty problem. Since the high-resolution sim-

ulations can resolve spatial gradients better than course

resolution simulations, they get penalized stronger if

small shifts in space and time do occur. Additionally,

R1P-15 is tied closer to the driving data by spectral

nudging than the high-resolution simulations.

In winter, all simulations are very similar irre-

spective of grid spacing, convection parameterization,

and terrain. The cor values (0.52–0.59) are higher than

FIG. 7. Fractions skill scores (FSSs) for simulation results of hourly precipitation remapped to 5-km grid spacing in (a)–(d) D-North and

(e)–(h) D-South, for different thresholds (0.1, 0.5, 1.0, and 2.0mm) and different horizontal scales for the summer months. The FSS of

a random simulation is plotted as a dashed line (bottom line), whereas reasonable skill is achieved for values larger than the dotted line

(top line). RAD-1 is used as a reference. The evaluation period is June 2005–May 2006.
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in summer, and sn is increased by about 20% com-

pared to STA-5.

This analysis of the temporal aspect of simulated

precipitation patterns does not reveal improved results

for grid spacings smaller than 15 km.

2) DIURNAL CYCLE OF PRECIPITATION AMOUNTS

Both validation datasets show a similar diurnal cycle

of precipitation in summer (Figs. 9a,c). However, a shift

of the peak in D-South for RAD-1 appears that cannot

be entirely explained within this framework, but is likely

caused by the transfer of reflectivities into rain rate and

by measuring artifacts.

The high-resolution simulations mimic the daily in-

crease and decrease of precipitation well. The explicit

calculation of convection for R2E-5 leads to the best

performance, especially in D-North. In contrast, R1E-1

and R1P-5 show a very similar daily cycle, suggesting that

the daily cycle for R1E-1 is mainly adopted from the

coarser R1P-5 simulation and not produced by the

FIG. 8. As in Fig. 7, but for the winter months and only for the thresholds (0.1, 0.5, and 1.0mm).

TABLE 3. Normalized standard deviation (sn) and correlation

coefficient (cor) of precipitation of all available datasets compared

to STA-5 based on 3-h and 5-km resolution for summer and winter.

Dataset

Summer

(D-North)

Summer

(D-South)

Winter

(D-North)

Winter

(D-South)

sn cor sn cor sn cor sn cor

RAD-1 0.98 0.82 1.03 0.75 1.40 0.78 0.90 0.80

R1P-15 0.90 0.40 0.75 0.30 1.24 0.52 1.18 0.59

R1P-5 1.45 0.29 0.96 0.24 1.17 0.53 1.23 0.58

R1E-1 1.56 0.28 1.19 0.29 1.22 0.54 1.23 0.59

R2E-5 1.57 0.33 1.14 0.26 — — — —
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explicit calculation of convection. The domain of R1E-1

seems to be too small to allow an independent temporal

evolution comparable to R2E-5. In D-South, the differ-

ences between these three simulations are weak but the

close accordance of R1E-1 and R1P-5 remains. The

coarser R1P-15 simulation shows a much poorer perfor-

mance with a premature increase and the lack of the late

afternoon maximum. This is an issue commonly seen at

resolutions where convection is under-resolved at grid

scale and instead parameterized (Prein et al. 2015).

In winter (Figs. 9b,d), no clear daily cycle is visible and

the differences are difficult to interpret. Convective ac-

tivity, which is usually the driver for a specific daily

precipitation regime, is minor in winter. In this way,

strong single events can dominate the daily cycle of

precipitation in the winter season.

d. Evaluation of the probability density function of
precipitation

Figure 10 shows the probability density function of

precipitation and the dry 3-h probabilities. This proba-

bility of dry time steps (,0.1mmh21) for each dataset is

calculated and added in the legend. For the validation

datasets, the dry 3-h probability is approximately 0.85 in

both summer and winter. Over the summer months, the

simulations with convection parameterization (R1P-5

and R1P-15) tend to underestimate this probability,

whereas R1E-1 and especially R2E-5 tends to over-

estimate it. This is in line with Berg et al. (2013) and

Ban et al. (2014), who report an underestimation of dry

day probabilities and trace this result to convection

parameterizations.

The PDF curves of both validation datasets are

comparable in summer. This is also true for the high-

resolution simulation PDFs for intensities below

7mm (3 h)21. For higher intensities they tend to cluster

by model setup (e.g., R1E-1 and R1P-5 vs R2E-5) in

D-North and by handling convection (R1P-5 vs R1E-1

and R2E-5) in D-South. The agreement of the PDFs

with the observations is better in D-South, even

for higher precipitation intensities. The R1P-15 PDF

reveals the lowest probabilities in both areas, dif-

ferent from the validation datasets. Small, but sys-

tematic differences become apparent for R1P-5 and

R2E-5 with lower probabilities for low intensities

and higher probabilities for medium and most high

intensities for R2E-5 compared to R1P-5. A detailed

PDF-analysis (not shown) reveals the slightly better

agreement of R1P-5 with validation datasets more

clearly.

FIG. 9. Mean diurnal cycle of precipitation for the temporal evaluation of simulation results based on 1-h values

for (a),(b)D-North and (c),(d)D-South, and for (left) the summer and (right) wintermonths. A 3-h runningmean is

applied. The additional simulation R2E-5 is only available for the summer months.
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In winter (Figs. 10b,d), all simulations exhibit similar

dry 3-h probabilities as the validation datasets. The

curves of interpolated station data and radar data differ

in D-North, probably because of the clutter in the radar

data. The PDFs of the three simulations are similar in

both domains. Only R1P-15 shows slightly lower prob-

abilities for higher precipitation intensities in D-South

as a result of the smoother topography of the Black

Forest at 15-km resolution, where usually the highest

precipitation amounts are observed.

6. Discussion

The results reflect a combination of influencing factors,

including the calculation of convection, grid spacing, and

topography. The decisive factor is how well the relevant

processes of precipitation formation such as orographic

forcing in complex terrain and the timing and spatial

distribution of convective precipitation can be resolved

by the model. In flat areas in winter and for all pre-

cipitation events (i.e., when these factors are of lesser

importance), the differences between the simulation re-

sults of R1P-15 andR1E-1 are almost negligible (Fig. 6a).

However, in summer and especially for high intensities

and in complex terrain (Figs. 5c,d) the variations among

the simulations increase and lead to an improved repre-

sentation of temporal and spatial characteristics of pre-

cipitation with smaller grid spacings. This is in line with

the findings of, for instance, Kendon et al. (2012) and

Prein et al. (2013b), with the difference that their iden-

tified added value of smaller grid spacings refers to the

comparison of coarser grid spacings (.10km) and sim-

ulations with fine grid spacings (#5km) mixing the

potential added value of the explicit calculation of con-

vection and the better representation of land use and

terrain. The emphasis of our work lies in the further

separation of reasons and consequences of those varia-

tions, focusing on several high-resolution simulations.

a. Impact of the calculation of convection

The strongest argument for the expected added

value of high-resolution simulations is the removal of

the convection parameterization, so its influence is

evaluated first. The simulation results of R1P-5 are

almost exclusively closer to R2E-5 and R1E-1 than

to R1P-15, even though for both simulations the

FIG. 10. Probability density functions (PDFs) of all available datasets with 15-km grid spacing and 3-h resolution

for (left) summer and (right) winter for (a),(b) D-North and (c),(d) D-South. The dashed lines display the PDFs of

all datasets at their original spatial resolution (if differing from 15-km grid spacing). The dry 3-h probability of each

dataset is annotated in the legend in brackets (15-km grid spacing/original grid spacing).
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GF-parameterization scheme is applied. This parame-

terization offers a smooth transition to cloud resolving

scales. It acts as a typical cumulus parameterization

scheme for deep convection with a cloud top at about

300 hPa for 15-km grid spacing. With higher spatial

resolutions, the entrainment rates are forced to increase

and the heating and drying tendencies decrease.

According to Grell and Freitas (2014), the scheme acts

as a shallow-cumulus scheme with the cloud top at about

800 hPa for 1-km grid spacing. In this way, the un-

resolved convective activity and parameterized pre-

cipitation amounts decrease significantly when using

smaller grid spacings as shown in Langhans et al. (2012)

and Grell and Freitas (2014). At a grid spacing of 5 km,

the parameterization is rather inactive and the differ-

ences between the high-resolution simulations are small

for almost all evaluations.

In general, R2E-5 and the corresponding R1P-5,

employing the Grell–Freitas scale-aware cumulus pa-

rameterization, are of comparable quality. The results

confirm the applicability of this convection parameteri-

zation for smaller grid spacings even within the gray

zone of convection. In this way, the spatial patterns

(Figs. 5–8) and the diurnal cycle (Fig. 9) are represented

successfully in both domains within this framework.

Donner et al. (2011) and Bechtold et al. (2014) also

reported improvements in the representation of the

diurnal cycle due to a new parameterization scheme.

Nevertheless, differences between R1P-5 and R2E-5

remain. In this work, the main added value of simula-

tions without convection parameterization at 5-km

grid spacing (R2E-5) can be observed for the do-

main with flat terrain of D-North. The spatial patterns

(correlograms in Figs. 5a,c and the FSS in Figs. 7a–d)

and also the diurnal cycle (Fig. 9a) are slightly better

represented by R2E-5 than by R1P-5. In D-South, the

improvements are restricted to more intense pre-

cipitation (FSS in Fig. 7h), whereas a poorer perfor-

mance is observed for the probability density function of

precipitation (PDFs in Fig. 10a). According toWeisman

et al. (1997) and Prein et al. (2015), convective instability

at the grid scale is forced toward an unrealistic scale for

grid spacings larger than 4km. This leads to an over-

estimation of the convective mass flux and the associated

precipitation. This effect may explain the overestimation

of probabilities for the observed intensities from approxi-

mately 10–30mm (3h)21 in R2E-5.

In summary, the advantages of the explicit calculation

of convection clearly dominate the drawbacks in our

evaluations. Therefore, our results suggest that an ap-

plication of a convective parameterization is not neces-

sary at 5-km grid spacing, independent of the complexity

of the terrain.

b. Added value of smaller grid spacings and the
influence of topography

Leveraging the advantages of an explicit calculation of

convection and a smaller grid spacing, R1E-1 should

outperform the other simulations. However, in our study

this is only true in the complex terrain of D-South, where

the higher spatial resolution shows its advantage espe-

cially for evaluations of spatial patterns (correlograms in

Fig. 5d and the FSS in Figs. 7e–h), and mainly for higher

precipitation amounts. Chan et al. (2013) in the southern

UnitedKingdom andBan et al. (2014) in Switzerland also

showed improvements of daily precipitation amounts

only for higher percentiles (90% and 95%). However, for

R1E-1, the more pronounced maxima and smaller pre-

cipitation cells in complex terrain for smaller pre-

cipitation intensities (correlograms in Fig. 6a and sn in

Figs. 4c,d) suggest an increased influence of orographic

forcing. The reasons for this behavior are not further in-

vestigated within this framework, but this feature might

also not indicate a shortcoming of themodels themselves,

but possibly also a shortcoming in the validation datasets

because of the spatiotemporal smoothing effects.

Conversely, in D-North, the simulations without

convective parameterization R1E-1 and R2E-5 perform

very similar for spatial evaluations with no clear im-

provements when reducing the grid spacing from 5 to

1 km in this region.

These results clearly show the influence of topography

even on high-resolution simulation results. In D-North,

added value is achieved by the explicit calculation of

convection, whereas in D-South, the respective simi-

larities of spatial evaluations reveal a dominating influ-

ence of resolving the orography. As the topography

induces convection and guides the location where pre-

cipitation occurs, the location of precipitation maxima

are better captured than in areas without any topo-

graphic forcing, as long as the model resolution is high

enough to reflect the topographic variation (pre-

cipitation patterns in Figs. 3 and 4). As a result, the

15-km runs fail to generate quality precipitation

amounts and distribution for D-South, while the 5-km

and 1-km runs perform well.

c. Influence of parent domain

The prerequisite for a successful development of

precipitation patterns in the model is a sufficiently large

domain. Brisson et al. (2016a) analyzed the influence of

the domain size in the CPS with 3-km grid spacing. They

observed a significant decrease of precipitation amounts

for smaller domain sizes than about 160 3 160 to 180 3
180 grid columns and concluded that a minimum dis-

tance from the boundary to the domain of interest
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of ;150 km is necessary for a proper spatial spinup. In

our case, the finest domains D03N and D03S have about

the same number of grid columns, albeit for a smaller

grid spacing. In another study, Matte et al. (2017) con-

cluded that the spinup distance corresponds to a fixed

number of grid points in the RCM. Since our 5-km

domain ought to be sufficiently large and our results for

R1E-1 reproduce the precipitation patterns of R1P-5

well, we conclude that, despite the smaller total domain

extent, the number of grid columns in the finest model

is large enough to provide meaningful precipitation

patterns.

However, since our 1-km domains are too small to

encompass entire mesoscale systems, the independent

development of large-scale precipitation patterns is

limited. Only smaller systems such as convective cells

can develop independently within such a domain. Ac-

cordingly, the very similar behavior of R1P-5 and R1E-1

regarding the diurnal cycle (Fig. 9) are hints for a sig-

nificant influence of the parent domain on the results of

the child domain.

The good performance of R2E-5 suggests further ex-

periments with nesting our 1-km simulations in this

domain in addition to R1P-5. Slight differences between

simulation results are expected because of varying

boundary conditions from the parent domain.

7. Conclusions and outlook

According to our results, a grid spacing of 15 km can

provide only limited details of precipitation patterns,

whereas a 5-km grid spacing captures the spatiotem-

poral variability of precipitation, adequately. Further

improvements for smaller grid spacings (1 km) are ob-

served in complex terrain (D-South) and especially for

higher precipitation intensities in summer (Fig. 5d).

Consequently, computational costs can be saved in

winter, when convective activity plays a minor role, and

in flat areas. The representation of spatial patterns is

dominated by the treatment of convection in D-North

and by resolving orography in D-South.

The temporal performance (diurnal cycle in Fig. 9) of

R1E-1 by contrast is influenced by the parent domain

R1P-5 in both areas. Thus, an independent develop-

ment of precipitation patterns in time and space is

partly limited for R1E-1. Larger domains comprising

mesoscale weather systems may reduce this influence,

but require extensive computation devices (Leutwyler

et al. 2017).

The WRF simulations produce the largest pre-

cipitation amounts at the highest altitudes. For the

complex terrain in D-South, a tight correlation of ob-

served precipitation maxima and altitude is found,

whereas in D-North, this is less pronounced in the ob-

servations. Consequently, the locations of precipitation

maxima are much better captured by our simulations in

D-South than in D-North. In D-North it is shown that

improvements of small-scale patterns (Figs. 5a,b and 6a,b)

may also cause a deterioration of annual precipitation

patterns with smaller grid spacings (Figs. 3e,f). As in-

dicated before, an improvement may be made by using

spectral nudging also on the 5-km grid spacings, rather

than on the outermost domain only. This should be in-

vestigated in the future.

At the lower end of the gray zone of convection (here:

at 5 km), reasonable results are achieved when using the

new, scale-aware Grell–Freitas convection parameteri-

zation, as well as by relying on an explicit calculation of

convection only. Depending on the statistical measure

and investigation area, either of the two methods can

lead to improvements. Consequently, for simulations at

this resolution, it is worth testing both approaches and

evaluating their performance with respect to the specific

problem to solve.While grid spacings in the gray zone of

convection are generally avoided by the modeling

community, they are of interest in the context of long-

term climate simulations, for which experiments at

smaller grid spacings are simply too expensive. Thus, the

progress made in the development of scale-aware cu-

mulus parameterizations may be of high importance for

the climate modeling community.

With smaller grid spacings, the impact of processes

such as orographic forcing seems to increase. A thor-

ough analysis of influencing factors such as wind and

radiation, beyond the scope of this work, may help to

achieve further indications for this behavior. In addition,

new PBL parameterization schemes that are designed

for resolutions on the order of 1 km should be tested

(e.g., Shin andHong 2013), since partly resolved vertical

transport in combination with a PBL parameterization

scheme that is designed for different grid spacings might

also affect precipitation results.

Limitations of the analysis presented here are the

relatively small areas of investigation and short evalua-

tion periods, at least in the context of climate modeling,

which is mainly due to the computational costs required

to perform these simulations. A larger statistical basis,

both spatially and temporally, will help to reduce the

influence of single events on, in particular, the proba-

bility density functions (Fig. 10) and the fractions skill

score analysis (Figs. 7 and 8) presented here.

The presented investigation looks beyond the com-

mon comparison of simulations with coarse and fine grid

spacings. It reveals aspects where potentials for further

improvements for high-resolution simulations are of-

fered and also where computational time can be saved.
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